INSIDE
 Page

Composite Wall Tests
Clinch Fastening of Cold-
Formed Steel
New Detail Cuts Installation 5 Time

Committee on Framing
Standards (COFS) Report
Design Software for Cold6 Formed Steel

Upcoming Events

METALCON

Oct. 20-22
San Diego, CA
Info: (617) 965-0055
AISI Residential Sub-
October 20
committees
San Diego, CA
Info: (202) 452-7202

LGSEA Meetings
Oct. 22-23
San Diego, CA
Info.: (615) 279-9251
Seminar - Cold-Formed
Oct. 23
Steel Design (6-hour)
San Diego
Info.: (615) 279-9251
Seminar - Cold-Formed Nov. 20
Steel Design (6-hour)
Atlanta
Info.: (615) 279-9251
Seminar - Cold-Formed Dec. 18-19
Steel Design (6- \& 3-hour)
Nashville
Info.: (615) 279-9251

Test Results on Wall Height Limits

by Young-ki Lee and Thomas H. Miller, Ph.D., P.E., Oregon State University

Aseries of composite wall tests were conducted by Oregon State University through the funding and support of the Metal Stud Manufacturer's Association, Metal Lath/Steel Framing Association, Gypsum Association, Drywall Information Trust Fund, and Knorr Steel Framing Systems, Inc.

These tests were conducted to develop experimentally-based limiting heights for interior, non-load-bearing walls under uniformly distributed, out-ofplane, lateral loadings. Testing was in compliance with ICBO ES AC86, "Acceptance Criteria for Determining Limiting Heights of Composite Walls Constructed of Gypsum Board and Steel Studs," and ASTM E 72-80, "Standard Methods of Conducting Strength Tests of Panels for Building Construction," using a uniform, vacuum chamber loading.

Cold-formed steel studs were spaced at 24 in . on center, and sheathed on both sides using $1 / 2$ in. gypsum board. Panels were tested in a simply supported, vertical orientation, simulating service conditions. The series consisted of 49 tests of wall panels with the following characteristics:

1) Nominal 4 and 8 ft high panels (43$1 / 4 \mathrm{in}$. and $88-1 / 2 \mathrm{in}$. actual spans, respectively) were sheathed with one sheet on each side (no joint),
2) Nominal 14 ft height panels (160 in . actual span) were sheathed with one 12 ft . sheet and a second sheet to make up the balance of the span,
3) Nominal 16 ft (184 in . actual span) height panels were sheathed with one 12 ft . sheet and a second sheet to make up the balance of the span.

Continued on page 2

Clinching - for framing without screws
 by Dr Hans Bergkvist, ATTEXOR Inc.

Acritical aspect of the growth of cold-formed steel framing is the identification of fastening methods that quickly and inexpensively produce strong and reliable connections. In some cases, these methods involve the adaptation of an existing technology to steel framing.

Clinching, for example, has been used for several decades in the automotive and appliance industries as a substitute for rivets, screws and spot welding. Although clinch fastening tools have been available to the steel framing market for a number of years, the potential for lower per-connection costs and faster installation times has increased interest by a number of builders.

Clinching joins sheet materials and profiles by generating a rivet-like joint in the framing members in a punching and squeezing sequence. As demonstrated in other industries, clinching produces strong connections in pre-coated or galvanized material found in the coldformed steel industry and gives a finished assembly without pre- or postwork. Clinching does not build any thermal stresses into the workpiece which gives a clinched joint exceptional perfor-

Continued on page 4
$\left.\begin{array}{c}\text { Newsletter for the } \\ \text { Light Gauge Steel } \\ \text { Engineers Association }\end{array}\right]$ Department Staff

Wall Height Limits
 Continued from page 1

The chamber method of loading was used with an airtight frame surrounding the specimen. For nominal 4 ft height tests, the lower track was screwed directly into a 1 in. thick wooden base, which was bolted to the bottom of the frame.

Successive incremental loadings were applied for 5 minutes to achieve deflections of L/360, L/240, and L/120, where
stiffnesses derived from multiple test heights and linear extrapolation for limiting heights greater than 16 ft were used and are both permitted by ICBO ES AC86. Composite bending stiffness includes the effects of both the gypsum board and steel studs, and was based on the equation for the midspan deflection of a simply-supported beam with a uniformly distributed loading over its entire span.

Continued on next page

L was the actual simply supported height of the panel. Failure was defined as when the maximum pressure could not be sustained without sudden or continuous movement of the test specimen.

Conservative limiting heights based on deflection were determined from a thorough analysis of the vertical composite wall test results using an average composite bending stiffness for each wall panel specimen. Linear interpolation between the resulting average composite

"IT" is the only software package that offers you a complete design of all building components including:

- Engineered roof truss layouts -- Roof or floor joist design -
- Automatic framing plan generation -
- Wall layout and elevation plots -
- Development of wind and seismic loads -
- Proprietary or Cee section trusses -
- Full material takeoffs -
- Metric or imperial input and output-

Visit Keymark at Metalcon '98 in San Diego, CA Booth 437
or contact us at:
2905 Wilderness Place, Suite 202
Boulder, CO 80301
(303) 443-8033 fax (303) 443-9054

Wall Height Limits
 Continued from previous page

Allowable heights of the wall studs alone based on flexure, shear, and web crippling strength-related failures, (including the effects of local buckling) were calculated in accordance with ICBO ES A46, "Acceptance Criteria for Steel Studs, Joists and Track." The beneficial effect of the gypsum board was neglected in these calculations, except for the restraint provided against lateral buckling. Limiting heights based on ultimate loads from the flexural testing were also derived using ICBO ES AC86. Linear interpolation between the multiple test heights was used, as permitted per ICBO ES AC86, to derive limiting heights based on flexural strength between the panels 8 ft height and taller.

The nominal 4 ft height panel tests were conducted for the 18 mil (25 gauge) studs to determine experimentally 1) shear capacity, 2) strength in a web crippling failure mode, and 3) potential horizontal shear failure along the screw connections between the studs and sheathing in a high shear condition. Where limiting heights based on
strength, considering not only flexure but also shear and web crippling, were less than those determined based on deflection from the tests, the lower heights based on strength controlled the limiting height value.

Design applications of these results should include consideration by the design professional of the potential effects of humidity and moisture content, repeated loads, damage to studs and gypsum board, and improper installation. A study of these effects, however, was not within the scope of these tests. The limiting height table (Table A) is considered appropriate for the design of walls with studs having the same nominal dimensions and properties as those tested. For additional information, contact Thomas Miller, Ph.D., P.E., (541) 737-3322.

National Training Curriculum Published

The American Iron \& Steel Institute (AISI) has released a standardized training program on steel framing techniques that provides step-by-step illustrated framing techniques for both experienced
and novice framers
For more information, contact: Toni Lewis, AISI (202) 452-7202.

Limiting Height for Interior Non-Load Bearing Walls											
18 Mils (25 Gauge)						33 Mils (20 Gauge)					
Stud Web Depth	Deflection Limit	5psf	Lateral 7.5psf	$\begin{aligned} & \text { Pressur } \\ & \text { 10psf } \\ & \hline \end{aligned}$	15psf	Stud Web Depth	Deflection Limit	5psf	Latera 7.5psf	Pressur 10psf	15psf
$1.625 "$	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \end{aligned}$	$\begin{gathered} - \\ 7^{\prime}-11 " \\ 9^{\prime}-9 " \end{gathered}$	$\begin{gathered} - \\ 8^{-}-0 " \end{gathered}$	-	-	1.625 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \end{aligned}$	$\begin{gathered} 7^{\prime}-9 " \\ 8^{\prime}-11^{\prime \prime} \\ 11^{\prime}-2{ }^{\prime \prime} \end{gathered}$	$\begin{gathered} - \\ 7^{\prime}-9 " \\ 9^{\prime}-9 " \end{gathered}$	8'-11"	7'-9"
2.5 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \\ & \hline \end{aligned}$	$\begin{gathered} 9 '-3^{\prime \prime} \\ 10^{\prime}-7 " \\ 11^{\prime \prime}-10^{\prime \prime} \\ \hline \end{gathered}$	$\begin{aligned} & 8^{\prime \prime}-1 " \\ & 9^{\prime}-3^{\prime \prime} \\ & 9^{\prime}-8^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 8^{\prime}-5 " \\ & 8^{\prime}-5 " \\ & \hline \end{aligned}$		2.5 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 10^{\prime}-2 " \\ & 11^{\prime \prime}-9 " \\ & 15^{\prime \prime}-1 " \\ & \hline \end{aligned}$	$\begin{array}{r} 8 '-9 " \\ 10^{\prime}-2 " \\ 13^{\prime}-2 " \\ \hline \end{array}$	$\begin{gathered} \text { 7'-10" } \\ \text { 9'-1" } \\ 11^{\prime}-9 " \\ \hline \end{gathered}$	$\begin{gathered} 7 '-10 " \\ 10^{\prime}-2 " \\ \hline \end{gathered}$
3.5 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 11^{\prime}-7{ }^{\prime \prime \prime} \\ & 13^{\prime}-5 " \\ & 13^{\prime}-9 " \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10^{\prime}-1 " \\ & 11^{\prime \prime}-0^{\prime \prime} \\ & 11^{-}-0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 '-1 " \\ & 9^{\prime \prime}-5^{\prime \prime} \\ & 9^{\prime}-5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 7^{\prime}-7^{\prime \prime} \\ & 7^{\prime}-7^{\prime \prime} \\ & 7^{\prime}-7 \\ & \hline \end{aligned}$	3.5 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 13^{\prime}-2^{\prime \prime} \\ & 15^{\prime 2}-2 \\ & 19^{\prime}-1 " \end{aligned}$	$\begin{aligned} & \hline 11^{\prime}-6 " \\ & 13^{\prime}-2 " \\ & 16^{\prime}-8 " \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10^{\prime}-5 " \\ & 11^{\prime \prime}-11 \\ & 15^{\prime}-2 " \\ & \hline \end{aligned}$	$\begin{gathered} 9^{\prime}-1 " \\ 10^{\prime}-5 " \\ 13^{\prime}-2 " \\ \hline \end{gathered}$
4.0 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \end{aligned}$	$\begin{aligned} & \hline 12 '-4 " \\ & 14-2 " \\ & 15^{\prime}-1 " \end{aligned}$	$\begin{aligned} & \text { 10'-9" } \\ & 12^{2}-1 " \\ & 12^{2}-1 " \end{aligned}$	$\begin{array}{r} 9^{\prime}-9 " \\ 10^{\prime}-5 " \\ 10^{\prime}-5 " \\ \hline \end{array}$	$\begin{aligned} & 8^{\prime}-5 " \\ & 8^{\prime \prime}-5^{\prime \prime} \\ & 8^{\prime}-5^{\prime \prime} \end{aligned}$	4.0 "	$\begin{aligned} & \mathrm{L} / 360 \\ & \mathrm{~L} / 240 \\ & \mathrm{~L} / 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 14'-5" } \\ & 16^{\prime}-7 " \\ & 20^{\prime \prime}-11^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { 12'-5" } \\ & 14^{\prime \prime}-5 " \\ & 18^{\prime \prime}-3^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline 11^{\prime}-3^{\prime \prime} \\ & 13^{\prime}-0 " \\ & 16^{\prime}-7{ }^{\prime \prime} \end{aligned}$	$\begin{array}{r} 9^{\prime}-8 " \\ 11^{\prime \prime}-3 " \\ 14^{\prime \prime}-5 " \end{array}$
6.0"	$\begin{aligned} & \mathrm{L} / 360 \\ & \text { L/240 } \\ & \text { L/120 } \end{aligned}$	$\begin{aligned} & 16^{\prime}-9 " \\ & 16^{\prime}-9 " \\ & 16^{\prime}-9 " \end{aligned}$	$\begin{aligned} & 13^{\prime}-5 " \\ & 13^{3}-5 " \\ & 13^{\prime}-5 " \end{aligned}$	$\begin{aligned} & 11^{\prime}-5 " \\ & 11^{\prime \prime}-5^{\prime \prime} \\ & 11^{\prime}-5^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hline \text { 8'-11" } \\ & 8^{\prime}-11^{\prime \prime} \\ & 8^{\prime}-11^{\prime \prime} \end{aligned}$	6.0"	$\begin{aligned} & \mathrm{L} / 360 \\ & \text { L/240 } \\ & \text { L/120 } \end{aligned}$	$\begin{aligned} & 19 '-0 " \\ & 21^{\prime \prime}-9 " \\ & 27-5 " \end{aligned}$	$\begin{aligned} & \text { 16'-8" } \\ & 19^{\prime}-0 " \\ & 24^{\prime}-0 " \end{aligned}$	$\begin{aligned} & 15^{\prime}-1 " \\ & 17^{\prime \prime}-3^{\prime \prime} \\ & 19^{\prime}-1 " \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 12 '-9 " \\ 12 '-9 " \\ 12 '-9 " \\ \hline \end{array}$

[^0]Note: Calculated limiting height is less than the actual test span of 7 '- $4-1 / 2^{\prime \prime}$, would not be conservative if based on the results for the nominal 8^{\prime} test panel, and is thus not reported.

TECHNICAL EXCHANGE

The Light Gauge Steel Engineers Association needs you and your experience. Please mail or fax your opinions, questions, and design details that are relevant to the coldformed steel industry (fax to Dean Peyton at (253) 941-9939). Upon editorial review your submission may be printed in the Technical Exchange Section of this Newsletter

Clinch Fastening of Cold-Formed Steel
 Continued from page 1

mance in situations of thermal fatigue or fire. Most importantly, the quality of a clinched joint can be controlled at any point in time without destroying or disturbing the assembled structure.

The two basic integral fastener shapes for typical cold-formed steel applications are rectangular and round. In a round clinch connection, the lock is produced throughout the 360 degree circumference. These joints are waterproof and have performed well under cyclic load conditions. Rectangular joint, or variants thereof, also seem to offer many advantages. It is notably highly insensitive to variations in material thickness, has high resistance to rotation and copes well with assembly situations involving more than two layers.

STRAP

Light Gauge Designer

The Only Software Package You Need to Design Steel, Concrete and Light Gauge

- Winner of the 1998 Modern Steel Construction "Hot Products Competition"
- Design 2D and 3D truss and frame structures of any shape
- 1000 loads, 1000 load combinations, up to 200 section per model
- The only program that designs for stress and deflections automatically

ATIR Engineering Software

 1-800-644-6441www.atir.com

The strength of a clinched joint depends essentially on four factors:

- The material type. A joint in steel will be stronger than one in aluminum
- The material thickness. The clinched connection of two pieces of 68 mil (14 ga .) will be stronger than the same size joint in two 33 mil (20 ga.) pieces.
- The clinch point size. A 5/16" diam.joint will be stronger than a $3 / 16$ " diam. joint.
- The material surface condition. A dry surface will give a stronger joint than if it is oiled or greased.

An optimum joint has to meet two seemingly contradictory requirements. In order to have a maximum interlocking of the material members, the dimension "C1" (figure 1) should be as large as possible. This will ensure a high pull-out strength. On the other hand the neck portion "S1" should be as large as possible so as to ensure high shear strength and high fatigue strength.

Generally speaking parameters can be selected to give the joint an optimum strength for the prevailing loading and operating conditions. A good compromise in most situations is simply to aim for $\mathrm{C} 1=\mathrm{S} 1=$ half the thickness of the punch side material layer (figure 1).

Clinching equipment

manufacturers give advice and supply easy-to-read tables guiding the tool kit selection process. Under normal operating conditions, a single tool kit will cover assembly tasks ranging from 2 sheets of 27 mil (22 gauge) material to 2 sheets of 54 mil (16 gauge) without changes or adjustments.

As a rule of thumb, the "ST"-value of a good quality round clinch joint is typi-

Continued on page 7

Table 1

Static strength, comparison: clinched joints and screws

Hand-held clinching equipment

Material thickness	Screw size / \# of screws in current design	\# of clinched joints for same shear strength
2 pieces / 33 mil	$6,8,10 / 1$	1
2 pieces / 43 mil	$6,8,10 / 1$	1
2 pieces / 54 mil	$6,8,10 / 3$	4

Suspended clinching equipment *

Material thickness	Screw size \# of screws in current design	\# of clinched joints for same shear strength
2 pieces / 54 mil	$6,8,10 / 1$	1
2 pieces / 68 mil	$6,8,10 / 1$	1
* Further ICBO testing in progress		

Test performed by Architectural Testing (ICBO approved laboratory) using hand-held SPOT CLINCH® 0302 AS and include a safety factor of 2.5 .

New Detail Speeds Installation of Bridging Block

Typically, the installation of solid blocking in the floor system of a steel framed structure is one of the most time- and labor-intensive elements in any given project. Although the detailing may vary according to the designer, the most common method requires the use of clip angles to attach a section of of the joist (blocking) to the joists. (NOTE: This detail is not intended to be used at the support ends of the joist, but rather at briding points, as required.)

Recently, a team of LGSEA engineers and contractors developed a new bridging block detail that is simple, requires fewer pieces, and dramatically cuts the amount of time required for installation. One of the members of this group, Mike Whitticar of Enertech Systems, is already using the new detail on one of his major projects, and he reports that installation times are one-third of the time required for more commonly used details.

In the new detail, the top and bottom
flanges of an 8-inch track are cut and the web is bent in either direction at a 90 degree angle. After this member is inserted between the 10 -inch "C" shaped floor joists (see figure 1), continuous flat strap is then attached to the bottom flanges of the joists.

This new detail is one of many improvements that have been developed by this team, which is working under contract to update the standard library of coldformed details published by the American Iron \& Steel Institute (AISI). The committee is expected to complete its work in the coming months, for publication by the AISI in 1999.

The LGSEA Newsletter is published by LGSEA The statements and opinions contained in this publication are those of the contributors and not necessarily of the Light Gauge Steel Engineers Association, nor the contributor's employer or professional association. This publication is intended to provide a forum for the exchange of relevant information in the industry and the information is made available with the express understanding that the publisher does not render technical services. All technical matters should be evalutated by a qualified engineer before being relied upon for a particular situation. © Copyright 1998, Light Gauge Steel Engineers Association			Cold-Formed Steel Design Software old-formed steel offers engineers and architects with tremendous design flexibility, but performing the necessary calculations can be an extremely repetitive and time-consuming process. To shortcut this process, a growing number of design professionals are turning to software that is specifically written for designing coldformed steel. Last year, the LGSEA conducted a survey of members to determine which software programs were most commonly being used. The most-frequently-cited programs were listed in the Feburary 1998 issue of the LGSEA Newsletter, and this chart (below) summarizes the main features of these programs. While we have attempted to include sufficient information for the reader to get a general overview, we are not able to include all the capabilities of individual programs. The LGSEA does not endorse specific products, and encourages readers to contact the individual software providers for additional information. The following programs are listed alphabetically.			
Program	Codes \& Standards	Input	face Description	Design Modules	Stuctural Components	Demo/ Price
CFS ver. 3.0 RSG Software (816) 524-5596 support@rsgsoftware.com	1996 AISI Specification 1990 ASCE Specification (for stainless steel)	Windows interface Section Wizard and of design problem. numerous editing t limits (w/t, D/t, KL .DXF file. Integrat	ving several files open at once. lysis Wizard for quick creation phical display accompanied by ques. Messages on exceeded c.). Output shape geometry to elp file documentation.	- Any general cold-formed steel shape, including closed shapes and built-up sections. - Full, net, and effective section properties. - LRFD and ASD strengths for compression, tension, moments, shears, and web crippling. - Strength increase due to cold work of forming - Axial/bending, bending/shear, bending/web-crippling interactions. - Continuous beam/column analysis with biaxial bending.	Databases for HUD, LGSI, MSMA, MBCI, Unimast, and Dale/Incor sections	$\begin{aligned} & \text { Yes } \\ & \$ 550 \end{aligned}$
$\begin{aligned} & \text { COLDSTEEL } \\ & \text { EnerGCorp } \\ & (602) 966-4411 \end{aligned}$	1986 AISI Specification	ColdSteel is a cold menu based, and th a DOS based progr ible PC.	ed steel analysisprogram that is ompts the user for all input. It is hat will run on any IBM compat-	- Check rectangular tubes and "C" shapes with or without stiffening lips or web punchouts. - Gross and effective section properties and axial, flexural and shear capacities can be calculated, and members can be checked for combined axial and and flexural, or combined shear and flexural loads. - Web crippling strength can be determined for any bearing length.	MSMA and LGSI shapes, plus custom shapes determined by user.	$\begin{gathered} \text { No } \\ \$ 299 \end{gathered}$
C-Stud Analyzer II Metal Stud Systems (800) 683-3235	1986 AISI Specification, with 1989 Addenda	C-Stud Analyzer II Analysis and Beam gram evaluates stu and axial forces fur integrates up to a s hangs, and 10 poin axial load, bridging widths.	two programs in one: Stud nalysis. The Stud Analysis protrack sections based on bending hed by the user. Beam Analysis pan uniformly loaded beam, overads. User input also includes acing, deflection limit and bearing	Stud Analysis program checks a single, boxed, or "I" shaped C-stud(s) or single "I" shaped track(s) for: - Allowable axial load versus applied axial load - Allowable bending load versus applied bending load - Combined bending and axial interaction Beam Analysis program further checks for shear and combined shear and bending, web crippling, and bending.	"Generic" database of 400 stud and track sections. Includes MSMA descriptions.	$\begin{gathered} \text { Yes } \\ \$ 395 \end{gathered}$
"IT" Keymark Enterprises (303) 443-8033 www.keymark.com	1986 AISI Specification, with 1989 Addenda and 1996 Edition	"IT" allows a user structures using Ke Model is a fully fun addition to the mat walls, trusses, fram 3-D.	describe the geometry of entire ark's "IT" Model program. "IT" onal 3-D modeling program. In ls and loads, the user defines the materials, and foundation in fully	- "IT" designs all joists, headers, beams, and girders. - Roof or floor trusses are designed for standard gravity loads. - Loads from the roof or floor members are passed through the wall, to the level below. Complete wall layout and elevation plots can then be generated. - All of the loads in the structure are tracked, and are available for foundation engineering. - Wind and seismic loads are generated for lateral design. - All materials in the building can then be consolidated, then cut sheets and materials lists can be output.	Proprietary and/or "C" section materials	Yes Call for pricing

$\underset{\sim}{\infty} \underset{\sim}{\infty}$	$\stackrel{\sim}{\infty}$	$\stackrel{\&}{i}$	$\stackrel{8}{8}$ \cdots \cdots

Clinch Fastening

Continued from page 4
cally $1 / 3$ of the total material thickness，and about $1 / 2$ of the total thickness for a rec－ tangular joint．

In tests recently performed on one manufacturer＇s hand－held product，clinched connections generally matched those made with \＃6，\＃8，and \＃10 screws on a one－for－one basis for gauges up to 2 pieces of steel 43 mils（18 ga．）and thinner and a 3 －for－4 rule for thicker steels．In a shop environment where the assembly equip－ ment can be suspended， heavy－duty clinch equipment also matched screws on a one－ to－one basis．Additional ICBO approved testing is in progress for 14 and 16 gauge， Grade D．

On June 26， 1998 ICBO＇s Evaluation Committee after a public hearing approved Acceptance Criteria for Clinched Connections of Cold－formed Steel Structural Members．The details of the ICBO ES criteria will be described in the next Newsletter．Currently，design values for specific clinch tools may be obtained from the individual manufacturers． Three who are LGSEA mem－ bers include：

ATTEXOR，Inc．

Contact：Dr．Hans Bergkvist Springfield，MA
（413）746－0222
www．attexor．com

BTM Corporation

Contact：Don McArthur

Marysville，MI
（810）364－0470
www．easysteel．com

ECKOLD AG－Switzerland

Contact：Craig Leber
Friendswood，TX
（281）482－3445

Pittsburg, California
The largest steelmaker in the Western United States

For more information, contact:
Ken Vought, Marketing Manager
USS-POSCO Industries
900 Loveridge Road
Pittsburg, CA 94565
(925) 439-6241

FAX: (925) 439-6514

ALPNE Trussteen

$\Delta \boldsymbol{\Delta}$ Engineering Excellence
Δ Product Innovation

Recognized Quality

State-of-the-art light gauge steel TrusSteel trusses from Alpine and Unimast

Kelley Claborn
Alpine Engineered Products, Inc. 2820 N. Great S.W. Parkway Grand Prairie, TX 75050

(800) 755-6005

America's Largest Metal Framing Producer

- Commitment
- Service
- Quality
- Innovation

Dietrich Industries provides

- Diverse product line
- Technical and engineering assistance specializing in design solutions
- Twenty regional manufacturing facilities to provide dependable service to your particular market
DIETPRICH
1-800-USE-BIGD

Light Gauge Steel Engineers Association

2017 Galbraith Drive Nashville, TN 37215
(615) 279-9251

Bulk Rate
US Postage Paid
Nashville, TN
Permit No. 1446

[^0]: 1) Studs tested with $1-1 / 4 \mathrm{in}$. outside flange width, and $1 / 8 \mathrm{in}$. return lip for 18 mil (25 gauge) studs and $3 / 8 \mathrm{in}$. return lip for 33 mil (20 gauge) studs.
 2) Stud thicknesses tested were 33 mil $(20$ gauge $)=.0329 "$ minimum base metal thickness and 18 mil (25 gauge) $=.0179$ " minimum base metal thickness.
 3) Minimum specified steel yield stress $=33 \mathrm{ksi}$
 4) Wallboard was attached with \#6 screws, self-piercing for 18 mil (25 gauge) and self-drilling for 33 mil (20 gauge), spaced at 12 in. on-center of each flange.
